

Using SNAP to Drive and Monitor GPS Devices

SNAP Engines offer a nice mix of power and portability, and that means they

are perfect candidates for pairing with GPS devices to plot locations or
movements.

October 11, 2010
Doc Number 600041-01A

Barry Tice
Associate Design Engineer

© 2010 Synapse®, All Rights Reserved. All Synapse products are patent pending.

500 Discovery Drive, Huntsville, Alabama 35806, 877-982-7888

Application Note

www.synapse-wireless.com

October 11, 2010

© 2010 Synapse®, All Rights Reserved. All Synaps

Table of Contents

Revision History

The Problem

The Solution

Hardware setup

Software setup

Begin logging

Viewing location information

What Makes it Work

The SNAP Engine Code

The Portal Code

References

Appendix 1

GPS_Logger.py

GPS_Portal................................

Appendix 2

A SNAP-friendly GPS device

Revision History

Previous Version Change

The Problem

GPS units are ubiquitous and fairly inexpensive. The challenge

building) a system with which the GPS device can interface for reporting.

 Using SNAP to Drive and Monitor GPS Devices

Reserved. All Synapse products are patent pending.

...

..

..

..

..

..

Viewing location information ...

..

..

..

..

..

..

..

..

friendly GPS device ..

Change

GPS units are ubiquitous and fairly inexpensive. The challenge is finding (or

building) a system with which the GPS device can interface for reporting.

Using SNAP to Drive and Monitor GPS Devices

e products are patent pending. 3

................... 3

........................ 3

........................ 4

... 4

.................. 5

.................... 5

............................... 6

.. 7

....................................... 7

... 9

........................ 10

........................ 11

................ 11

...................... 16

........................ 19

.............................. 19

Page

is finding (or

building) a system with which the GPS device can interface for reporting.

 Using SNAP to Drive and

4 © 2010 Synapse®, All Rights

The Solution

Connecting a GPS unit to the UART

intelligence around the incoming data AND allows you to accumulate and

track that location data across a wide area.

This example uses an RF100 SNAP

Engine on a Synapse Wireless

ProtoBoard, with a Tyco A1035

module. That GPS outputs location data

in standard NMEA-0183 format as a

serial stream at 4800 baud.

A SNAPpy script in the SNAP Engine

connects to the GPS module through

UART0. It reports that data back to

Portal, which formats it into a KML file that can then b

Earth or Google Maps. If you are in a position to tether the SNAP Engine to a

PC (or laptop), you can connect it using a serial cable

can report back to Portal over the air. If reporting over the air, a mesh

network of other SNAP devices can extend your reporting range over many

miles.

Hardware setup

There isn’t much hardware setup required.

Tyco
A1035-D

4800 Baud

Using SNAP to Drive and Monitor GPS Devices October

All Rights Reserved. All Synapse products are patent pending.

Connecting a GPS unit to the UART of a SNAP device lets you wrap some

intelligence around the incoming data AND allows you to accumulate and

track that location data across a wide area.

This example uses an RF100 SNAP

Engine on a Synapse Wireless

ProtoBoard, with a Tyco A1035-D GPS

That GPS outputs location data

format as a

serial stream at 4800 baud.

the SNAP Engine

to the GPS module through

It reports that data back to

Portal, which formats it into a KML file that can then be loaded into Google

If you are in a position to tether the SNAP Engine to a

PC (or laptop), you can connect it using a serial cable. Otherwise

can report back to Portal over the air. If reporting over the air, a mesh

of other SNAP devices can extend your reporting range over many

There isn’t much hardware setup required.

You will need to determine the serial TX and RX

pins on your device. Connect those pins to GPIO_3

and GPIO_4 of the SNAP Engine using the

ProtoBoard’s terminal blocks. On the Tyco A1035

D module, TX is Pin 3, RX is Pin 5, VCC is Pin

and Ground is Pin 9.

You can probably also power the GPS device from

the ProtoBoard, depending on the GPS device

GPS Data Flow

RF
Engine

Serial or Over the Air

Portal

KML File Import

Google

Maps

October 11, 2010

e products are patent pending.

of a SNAP device lets you wrap some

intelligence around the incoming data AND allows you to accumulate and

e loaded into Google

If you are in a position to tether the SNAP Engine to a

Otherwise the unit

can report back to Portal over the air. If reporting over the air, a mesh

of other SNAP devices can extend your reporting range over many

TX and RX

pins on your device. Connect those pins to GPIO_3

using the

On the Tyco A1035-

VCC is Pin 7,

also power the GPS device from

, depending on the GPS device’s

Google

Maps

October 11, 2010

© 2010 Synapse®, All Rights Reserved. All Synaps

requirements. The ProtoBoard provides 3.3 volts as VCC, when using an

external power supply. If powering the board from batteries,

battery voltage. If that voltage is an appropriate level for the GPS module (it

is for the A1035-D), connect the GPS module’s power pins to the VCC and

Ground connections on the ProtoBoard.

If you would like audible feedback from your GPS node, connect a piezo

buzzer from GPIO_12 to ground. The buzzer will sound each time the board

sends a GPS reading to Portal.

See Appendix 2 for one example of a way to modularize the GPS un

can be quickly connected to and removed from

Software setup

Load the GPS_Portal.py Python script into Portal.

Load the GPS_Logger.py SNAPpy script into the RF Engine, and power the

ProtoBoard.

Connect Portal to your network. You can use a serial cable directly to the

ProtoBoard, or use another SNAP device as your bridge node and connect to

the GPS node wirelessly.

If you have changed Portal’s address from the default value of 00.00.01, use

the specifyPortalAddress() fu

Portal’s address is. It uses an NV parameter in the node to

address between reboots. (Alternately, you can

Portal’s address.)

The GPS node will blink LED1 every second to indicate that it is powered and

running. The node will blink LED2 (and will pulse GPIO_12) every time it

sends location data to Portal.

Begin logging

Once you have the scripts loaded and the GPS node knows Portal’s address,

select the Portal node and click the startNewFile() function. Portal will create

a new data file, named for the current hour and minute. By default, this file

is created in c:\RangeData

FILE_PATH constant in the GPS_Portal.py script.

Portal will begin logging location data received from the GPS node. Every

time the GPS module sends the SNAP Engine a new location, the SNAP

 Using SNAP to Drive and Monitor GPS Devices

Reserved. All Synapse products are patent pending.

. The ProtoBoard provides 3.3 volts as VCC, when using an

external power supply. If powering the board from batteries, VCC

t voltage is an appropriate level for the GPS module (it

), connect the GPS module’s power pins to the VCC and

Ground connections on the ProtoBoard.

If you would like audible feedback from your GPS node, connect a piezo

to ground. The buzzer will sound each time the board

sends a GPS reading to Portal.

ne example of a way to modularize the GPS un

can be quickly connected to and removed from a ProtoBoard.

Python script into Portal.

Load the GPS_Logger.py SNAPpy script into the RF Engine, and power the

etwork. You can use a serial cable directly to the

ProtoBoard, or use another SNAP device as your bridge node and connect to

If you have changed Portal’s address from the default value of 00.00.01, use

the specifyPortalAddress() function in the GPS node to tell the node what

uses an NV parameter in the node to remember the

een reboots. (Alternately, you can edit the script to specify

The GPS node will blink LED1 every second to indicate that it is powered and

running. The node will blink LED2 (and will pulse GPIO_12) every time it

sends location data to Portal.

Once you have the scripts loaded and the GPS node knows Portal’s address,

select the Portal node and click the startNewFile() function. Portal will create

a new data file, named for the current hour and minute. By default, this file

angeData\' but you can change that by updating the

FILE_PATH constant in the GPS_Portal.py script.

Portal will begin logging location data received from the GPS node. Every

time the GPS module sends the SNAP Engine a new location, the SNAP

Using SNAP to Drive and Monitor GPS Devices

e products are patent pending. 5

. The ProtoBoard provides 3.3 volts as VCC, when using an

VCC is the

t voltage is an appropriate level for the GPS module (it

), connect the GPS module’s power pins to the VCC and

If you would like audible feedback from your GPS node, connect a piezo

to ground. The buzzer will sound each time the board

ne example of a way to modularize the GPS unit so it

Load the GPS_Logger.py SNAPpy script into the RF Engine, and power the

etwork. You can use a serial cable directly to the

ProtoBoard, or use another SNAP device as your bridge node and connect to

If you have changed Portal’s address from the default value of 00.00.01, use

nction in the GPS node to tell the node what

remember the

dit the script to specify

The GPS node will blink LED1 every second to indicate that it is powered and

running. The node will blink LED2 (and will pulse GPIO_12) every time it

Once you have the scripts loaded and the GPS node knows Portal’s address,

select the Portal node and click the startNewFile() function. Portal will create

a new data file, named for the current hour and minute. By default, this file

but you can change that by updating the

Portal will begin logging location data received from the GPS node. Every

time the GPS module sends the SNAP Engine a new location, the SNAP

 Using SNAP to Drive and

6 © 2010 Synapse®, All Rights

Engine will relay that data to Portal. Portal

KML file. (It also displays latitude, longitude, altitude, number of satellites

seen, satellite time, and a data point number in the Portal log.)

KML defines the standard file format used by Google

That means you can import your SNAP

to precisely map each location.

Remember that if you do not have your GPS node tethered by a serial cable,

the data sent to Portal will wirelessly travel through

Your GPS unit can travel anywhere within range of your SNAP network and

will faithfully report its position.

When you have received all the position data you wish to receive, click the

closeExistingFile() function in Portal. This crea

file so it will be complete and valid.

Viewing location information

Once you have all your data collected, log into Google Maps. (You can also

import the data into Google Earth, if you have it installed.)

Click My Maps, and then click the Create new map link.

map with a name, and then click the Import link.

Browse to your data file and import it. Google Maps will plot each of your

position points. Each point, if selected, will display its latitude, longitude,

altitude, time, and number of satellites. The map “pins” will also be color

coded, indicating the number of satellites that were available for the

reading. (This can be an indication of the reliability of the reading, as

readings with fewer than four sate

Your resulting map will look something like

Using SNAP to Drive and Monitor GPS Devices October

All Rights Reserved. All Synapse products are patent pending.

y that data to Portal. Portal will then write the data into a

KML file. (It also displays latitude, longitude, altitude, number of satellites

seen, satellite time, and a data point number in the Portal log.)

KML defines the standard file format used by Google Earth and Google Maps.

That means you can import your SNAP-generated data set into Google Maps

to precisely map each location.

Remember that if you do not have your GPS node tethered by a serial cable,

the data sent to Portal will wirelessly travel through a SNAP mesh network.

Your GPS unit can travel anywhere within range of your SNAP network and

will faithfully report its position.

When you have received all the position data you wish to receive, click the

closeExistingFile() function in Portal. This creates closing tags within the KML

file so it will be complete and valid.

Viewing location information

Once you have all your data collected, log into Google Maps. (You can also

import the data into Google Earth, if you have it installed.)

then click the Create new map link. Provide your new

map with a name, and then click the Import link.

Browse to your data file and import it. Google Maps will plot each of your

position points. Each point, if selected, will display its latitude, longitude,

altitude, time, and number of satellites. The map “pins” will also be color

coded, indicating the number of satellites that were available for the

reading. (This can be an indication of the reliability of the reading, as

readings with fewer than four satellites responding can be erratic.)

Your resulting map will look something like the following:

October 11, 2010

e products are patent pending.

the data into a

KML file. (It also displays latitude, longitude, altitude, number of satellites

Earth and Google Maps.

generated data set into Google Maps

Remember that if you do not have your GPS node tethered by a serial cable,

a SNAP mesh network.

Your GPS unit can travel anywhere within range of your SNAP network and

When you have received all the position data you wish to receive, click the

tes closing tags within the KML

Once you have all your data collected, log into Google Maps. (You can also

Provide your new

Browse to your data file and import it. Google Maps will plot each of your

position points. Each point, if selected, will display its latitude, longitude,

altitude, time, and number of satellites. The map “pins” will also be color-

coded, indicating the number of satellites that were available for the

reading. (This can be an indication of the reliability of the reading, as

llites responding can be erratic.)

October 11, 2010

© 2010 Synapse®, All Rights Reserved. All Synaps

What Makes it Work

The SNAP Engine Code

The code for this project (listed in Appendix 1)

not be immediately intuitive.

Private functions

For starters, you may notice that several of the functions in this script have

an underscore at the beginning of their names (e.g.,

and _sendGpsInfo()). In a SNAPpy script,

underscore makes the function

directly called by any external SNAP node, including Portal.

can only be called by other functions within the same script.

that the private functions, at the bottom of the list

pane, cannot be clicked in Portal to invoke them.)

You can use this to your advantage

functions in a script. In very long or very complex scripts

too many functions you can privatize some of them that wouldn

 Using SNAP to Drive and Monitor GPS Devices

Reserved. All Synapse products are patent pending.

(listed in Appendix 1) uses a few features that may

immediately intuitive.

ou may notice that several of the functions in this script have

an underscore at the beginning of their names (e.g., _procToc() , _every100ms()

In a SNAPpy script, starting a function name with an

underscore makes the function “private.” This means the function cannot be

called by any external SNAP node, including Portal. Private functions

can only be called by other functions within the same script. (You

that the private functions, at the bottom of the list in Portal’s Node Info

, cannot be clicked in Portal to invoke them.)

You can use this to your advantage. SNAPpy limits you to 255 “

n very long or very complex scripts, if you end

too many functions you can privatize some of them that wouldn

Using SNAP to Drive and Monitor GPS Devices

e products are patent pending. 7

uses a few features that may

ou may notice that several of the functions in this script have

_every100ms() ,

a function name with an

This means the function cannot be

rivate functions

(You’ll notice

s Node Info

“public”

f you end up with

too many functions you can privatize some of them that wouldn’t be called

 Using SNAP to Drive and

8 © 2010 Synapse®, All Rights

from outside the node. (This is rarely an issue.) You also might find that,

because the private functions appear at the bottom

names when viewing your node in Python,

function list, moving things that you wouldn

the way and making it easier to find

Character mode serial processing

The next unusual approach in the script is required because

outputs an NMEA-0183 standard message

serial connection for this message is 4800 baud, 8N1, which is

straightforward enough. However

into a single string buffer, so SNAPpy is not able to receive the entire

message in one piece. For example, the

device is:

$GPGGA,060055.000,0000.0000,N,00000.0000,E,0,00,99.0,0082.0,M,18.0,M,,*58

This message includes 15 bits of data, separated by commas and ending

with a carriage return. But the complete message is 73 characters long,

which the RF100 cannot accept.

Because of this, the _startup()

event) configures the standard input

rather than line mode. This means the serial input handlers will be sending

characters to SNAPpy as they receive them, rather than waiting for a

complete buffer to be filled, or wa

Parsing the message

This method of receiving the characters colors the way the remainder of the

SNAPpy script processes the data. It cannot simply t

parse the pieces out of it. It must

characters at a time. Each time it receives a

(denoted in Python as ‘\r’)

sort, so it also has to keep track of the last

know what the next thing it

This approach to remembering what the system is supposed to be doing in

between function runs (triggered by the

as a “state machine.” The system

and moves from state to state

Using SNAP to Drive and Monitor GPS Devices October

All Rights Reserved. All Synapse products are patent pending.

(This is rarely an issue.) You also might find that,

functions appear at the bottom of the list of function

your node in Python, you can use it to tidy up your

ing things that you wouldn’t normally invoke directly out of

the way and making it easier to find functions in the function list.

serial processing

unusual approach in the script is required because the GPS device

standard message across its serial connection. The

serial connection for this message is 4800 baud, 8N1, which is

straightforward enough. However the NMEA signal coming in is too long to fit

e string buffer, so SNAPpy is not able to receive the entire

For example, the GPGGA format sent by the GPS

$GPGGA,060055.000,0000.0000,N,00000.0000,E,0,00,99.0,0082.0,M,18.0,M,,*58

message includes 15 bits of data, separated by commas and ending

But the complete message is 73 characters long,

which the RF100 cannot accept.

_startup() function (hooked to the SNAP Engine

s the standard input to be received in character mode,

rather than line mode. This means the serial input handlers will be sending

y as they receive them, rather than waiting for a

to be filled, or waiting for a carriage return or line feed.

This method of receiving the characters colors the way the remainder of the

SNAPpy script processes the data. It cannot simply take a long string and

e the pieces out of it. It must instead build its strings up one or two

. Each time it receives a comma or a carriage return

), it knows it has another complete unit of some

sort, so it also has to keep track of the last complete thing it received to

know what the next thing it’s expecting is.

This approach to remembering what the system is supposed to be doing in

between function runs (triggered by the HOOK_STDIN event) is referred to

he system has a defined set of states it can end in,

and moves from state to state based on the next information it receives.

October 11, 2010

e products are patent pending.

(This is rarely an issue.) You also might find that,

list of function

ou can use it to tidy up your

t normally invoke directly out of

functions in the function list.

the GPS device

across its serial connection. The

the NMEA signal coming in is too long to fit

e string buffer, so SNAPpy is not able to receive the entire

GPGGA format sent by the GPS

$GPGGA,060055.000,0000.0000,N,00000.0000,E,0,00,99.0,0082.0,M,18.0,M,,*58

message includes 15 bits of data, separated by commas and ending

But the complete message is 73 characters long,

function (hooked to the SNAP Engine’s startup

o be received in character mode,

rather than line mode. This means the serial input handlers will be sending

y as they receive them, rather than waiting for a

iting for a carriage return or line feed.

This method of receiving the characters colors the way the remainder of the

ake a long string and

uild its strings up one or two

a carriage return

, it knows it has another complete unit of some

it received to

This approach to remembering what the system is supposed to be doing in

HOOK_STDIN event) is referred to

can end in,

ion it receives.

October 11, 2010

© 2010 Synapse®, All Rights Reserved. All Synaps

Processing message tokens

In this script, the state global

as characters are received they are appended to the

variable until the token delim

Once a token is seen as complete (because the token

the token is sent off to the

The _procToc() function receives the token

already heard from the current message string from the GPS unit.

already heard the time (state 2)

expect would be the latitude (state 3). So it interprets the current token on

the assumption it is a latitude.

Each token is processed by

another function called by

processed results are saved into a global variable

(latitude [with pole], longitude [with meridian], number of satellites,

altitude, and time) have been received

dataReadyToSend variable to indicate it has one of everything and the data is

ready to go.

Forwarding data to Portal

At this point, the global vari

The _every100ms() function, hooked into the timer event that fires every tenth

of a second, checks the dataReadyToSend

conditions have been met it invokes the

data to Portal’s getAll() function

The Portal Code

Once Portal receives the time, latitude, longitude, altitude and number of

satellites in its getAll() function, it can process them in any way it likes.

Remember that Portal runs a full Python imple

SNAPpy subset, so it can write data files, save to datab

do anything else you ask of it.

In this application, we want

for upload into Google Maps or Google Earth.

KML files as XML data

A KML file is a data file in XML format that has specific data

As such, there is header data that must be established at the beginning of

 Using SNAP to Drive and Monitor GPS Devices

Reserved. All Synapse products are patent pending.

global variable keeps track of the current state, and

characters are received they are appended to the curTok (current token)

until the token delimiter (comma or carriage return) is received.

Once a token is seen as complete (because the token delimiter is received),

the token is sent off to the _procTok() function.

receives the token and keeps track of what it has

already heard from the current message string from the GPS unit.

(state 2), it knows that the next thing it should

the latitude (state 3). So it interprets the current token on

he assumption it is a latitude.

processed by _procTok() (or, more precisely, is processed by

another function called by _procTok() based on the current state),

saved into a global variable until all the desired values

(latitude [with pole], longitude [with meridian], number of satellites,

have been received. The _procTok() function then sets the

variable to indicate it has one of everything and the data is

variables should all have GPS information in them.

function, hooked into the timer event that fires every tenth

dataReadyToSend flag (and the timerReady flag

conditions have been met it invokes the _sendGpsInfo() function to pass the

function, clear the variables, and start over.

time, latitude, longitude, altitude and number of

function, it can process them in any way it likes.

Remember that Portal runs a full Python implementation, rather than the

SNAPpy subset, so it can write data files, save to databases, plot graphs, or

do anything else you ask of it.

In this application, we want the Portal script to save the data into

for upload into Google Maps or Google Earth.

a data file in XML format that has specific data elements in it.

As such, there is header data that must be established at the beginning of

Using SNAP to Drive and Monitor GPS Devices

e products are patent pending. 9

keeps track of the current state, and

(current token)

omma or carriage return) is received.

is received),

and keeps track of what it has

already heard from the current message string from the GPS unit. If it has

, it knows that the next thing it should

the latitude (state 3). So it interprets the current token on

(or, more precisely, is processed by

based on the current state), and the

until all the desired values

(latitude [with pole], longitude [with meridian], number of satellites,

then sets the

variable to indicate it has one of everything and the data is

should all have GPS information in them.

function, hooked into the timer event that fires every tenth

flag), and if all

to pass the

, clear the variables, and start over.

time, latitude, longitude, altitude and number of

function, it can process them in any way it likes.

mentation, rather than the

ases, plot graphs, or

script to save the data into a KML file

elements in it.

As such, there is header data that must be established at the beginning of

 Using SNAP to Drive and

10 © 2010 Synapse®, All Rights

each data file, and “close”

the “real” data has been written to it.

To implement this, the Portal script has a

closeExistingFile() function.

filename based on the PC’

latter closes out that file once all the data is received. Any call to

the GPS node between invoking

in one <Placemark> element being added to the data file. Each

<Placemark> element represents one point on the Google Maps map.

Initializing the KML file

The startNewFile() function create

defining the <Document>

<Style> elements that will be used to color

the number of satellites tha

writeStyle() function once each for four colors

KML file. Once the file has been opened, the

Portal will know to start writing <Placemark> data points to the file.

Adding <Placemark> data

With the file open, the getAll()

unit) determines the correct color style based on the number of satellites

and writes the data point to the KML file. It includes, as

incrementing data point number. This number appears as the point

imported into Google Earth. In Google Maps, it is visible from the listing of

data points to the left of the

getAll() function comprises one comp

Closing the KML file

When you have completed all the data collection you wish,

closeExistingFile() function

tags so the Google applications will

data into Google Maps or Google Earth, t

References

SNAP Reference Manual
EK2100 User’s Guide

Portal Reference Manual

Using SNAP to Drive and Monitor GPS Devices October

All Rights Reserved. All Synapse products are patent pending.

” tags must be added to the end of the file after all

data has been written to it.

To implement this, the Portal script has a startNewFile() function and a

function. The former creates a new data file (with a

’s clock time when the file is created), and the

latter closes out that file once all the data is received. Any call to

between invoking startNewFile() and closeExistingFile()

<Placemark> element being added to the data file. Each

> element represents one point on the Google Maps map.

unction creates the new KML data file. This involves

defining the <Document> and <Folder> tags, as well as creating the

<Style> elements that will be used to color-code map data points based on

the number of satellites that contributed to the GPS data. It calls the

function once each for four colors to define those styles in the

Once the file has been opened, the fileIsOpen variable is also set so

Portal will know to start writing <Placemark> data points to the file.

getAll() function (called by the node with the GPS

determines the correct color style based on the number of satellites

and writes the data point to the KML file. It includes, as part of that data, an

incrementing data point number. This number appears as the point

imported into Google Earth. In Google Maps, it is visible from the listing of

of the map. Each KML data point written by the

comprises one complete <Placemark> element in the XML.

When you have completed all the data collection you wish, the

function closes the <Folder>, <Document>, and <kml>

tags so the Google applications will recognize the file as valid. Loading the

a into Google Maps or Google Earth, then, is pretty straightforward.

October 11, 2010

e products are patent pending.

tags must be added to the end of the file after all

function and a

The former creates a new data file (with a

the file is created), and the

latter closes out that file once all the data is received. Any call to getAll() by

closeExistingFile() will result

<Placemark> element being added to the data file. Each

> element represents one point on the Google Maps map.

This involves

ll as creating the

code map data points based on

It calls the

to define those styles in the

is also set so

Portal will know to start writing <Placemark> data points to the file.

ode with the GPS

determines the correct color style based on the number of satellites

part of that data, an

incrementing data point number. This number appears as the point’s label if

imported into Google Earth. In Google Maps, it is visible from the listing of

point written by the

lete <Placemark> element in the XML.

closes the <Folder>, <Document>, and <kml>

Loading the

hen, is pretty straightforward.

October 11, 2010

© 2010 Synapse®, All Rights Reserved. All Synaps

Appendix 1

GPS_Logger.py

Load this script into the SNAP Engine connected to the GPS device.

"""
GPS Interface: NMEA- 0183 device connected to a ProtoBoard.
In this case , it is a Tyco A1035, which sends a serial NMEA sig nal at
4800 baud, 8N1.

Connect the GPS serial lines to GPIO_3 and GPIO_4 o f your SNAP Engine.
(If using an RF300, you will need to use GPIO_7 and GPIO_8, as that Engine
has only one UART.) Connect the GPS

The serial NMEA signal is processed in character mo de because the whole message
is too long to fit in a string buffer. Pieces are p arsed out into their components
and sent to Portal, which logs them into a KML file . You can
into Google Maps to see where you ended up.

This code assumes it is running on a ProtoBoard. Co nnect a piezo buzzer between
GPIO_12 and ground to hear a beep each time the uni t sends a GPS reading to Portal.
LED2 also pulses each time a GPS reading goes to Portal. LED1 pulses every sec ond.
(Use the specifyPortalAddress() function if your Po rtal address is not the default.)
"""

from synapse.platforms import *
from synapse.switchboard import *

NV_PORTAL_ADDRESS = 213
WRITE_POINT_EVERY_SECS = 5

Declare some globals
Time
utc_hr = 0
utc_min = 0
utc_sec = 0

Latittude
lat_deg = 0
lat_min = 0
lat_frac_min = 0
lat_pole = ' '

Longitude
lng_deg = 0
lng_min = 0
lng_frac_min = 0
lng_meridian = ' '

fixStat = 0 # nonzero is vali
numSatellites = 0 # 0- 12; at least 3 needed for lat/long, 4 for altitude
altitude = 0

state = 0
curTok = ''

dataReadyToSend = False
timerCount = 0
timerReady = False

@setHook(HOOK_100MS)

 Using SNAP to Drive and Monitor GPS Devices

Reserved. All Synapse products are patent pending.

Load this script into the SNAP Engine connected to the GPS device.

0183 device connected to a ProtoBoard.
, it is a Tyco A1035, which sends a serial NMEA sig nal at

Connect the GPS serial lines to GPIO_3 and GPIO_4 o f your SNAP Engine.
(If using an RF300, you will need to use GPIO_7 and GPIO_8, as that Engine
has only one UART.) Connect the GPS power lines to VCC and Ground.

The serial NMEA signal is processed in character mo de because the whole message
is too long to fit in a string buffer. Pieces are p arsed out into their components
and sent to Portal, which logs them into a KML file . You can then load that file
into Google Maps to see where you ended up.

This code assumes it is running on a ProtoBoard. Co nnect a piezo buzzer between
GPIO_12 and ground to hear a beep each time the uni t sends a GPS reading to Portal.

a GPS reading goes to Portal. LED1 pulses every sec ond.
(Use the specifyPortalAddress() function if your Po rtal address is not the default.)

from synapse.platforms import *
from synapse.switchboard import *

fixStat = 0 # nonzero is vali d fix
12; at least 3 needed for lat/long, 4 for altitude

Using SNAP to Drive and Monitor GPS Devices

e products are patent pending. 11

Load this script into the SNAP Engine connected to the GPS device.

(If using an RF300, you will need to use GPIO_7 and GPIO_8, as that Engine

The serial NMEA signal is processed in character mo de because the whole message
is too long to fit in a string buffer. Pieces are p arsed out into their components

then load that file

This code assumes it is running on a ProtoBoard. Co nnect a piezo buzzer between
GPIO_12 and ground to hear a beep each time the uni t sends a GPS reading to Portal.

a GPS reading goes to Portal. LED1 pulses every sec ond.
(Use the specifyPortalAddress() function if your Po rtal address is not the default.)

12; at least 3 needed for lat/long, 4 for altitude

 Using SNAP to Drive and

12 © 2010 Synapse®, All Rights

def _every100ms(tick):
 """
 Polls to see if the GP S has provided a complete set of data to forward
 to Portal. If the data is available, it sends it, b links LED2, and
 pulses GPIO_12, expecting
 """
 global dataReadyToSend
 global timerReady

 if dataReadyToSend and timerReady:
 dataReadyToSend = False
 timerReady = False
 _sendGpsInfo()
 pulsePin(GPIO_12, 20, True)
 pulsePin(GPIO_2, 100, True)

@setHook(HOOK_1S)
def _everySecond(tick):
 """
 Invoked every second, this blinks LED1 as a visual
 Also, increments counter to determine if a point sh ould be saved.
 """
 global timerReady
 global timerCount

 pulsePin(GPIO_1, 100, True)

 timerCount += 1
 timeCount %= WRITE_POINT_EVERY_SECS
 if timerCount == 0:
 timerReady = True

def specifyPortalAddress(portalAddress):
 """
 Call this function to specify Portal's address in y our SNAP network.
 By default, Portal's address is '
 to invoke thi s if you have changed that default value in Portal.
 """
 if portalAddress == None:
 portalAddress = '\x00 \

 if len(portalAddress) != 3:
 portalAddress = '\x00 \

 if ord(portalAddress[0]) != 0 or ord(porta
 portalAddress = '\x00 \

 saveNvParam(NV_PORTAL_ADDRESS, portalAddress)

@setHook(HOOK_STARTUP)
def _startup():
 """
 Configures the serial connection to the GPS device.
 Configures LEDs and the piezo buzze
 """
 initUart(0, 4800)
 stdinMode(1, False) # Char mode, no echo

 # Connect GPS serial output to STDIN, where our eve nt handler will parse the
messages
 crossConnect(DS_UART0, DS_STDIO)

 specifyPortalAddress(l oadNvParam(NV_PORTAL_ADDRESS))

Using SNAP to Drive and Monitor GPS Devices October

All Rights Reserved. All Synapse products are patent pending.

S has provided a complete set of data to forward
to Portal. If the data is available, it sends it, b links LED2, and
pulses GPIO_12, expecting

if dataReadyToSend and timerReady:
dataReadyToSend = False

pulsePin(GPIO_12, 20, True)
pulsePin(GPIO_2, 100, True)

Invoked every second, this blinks LED1 as a visual "I'm alive!" indicator.
Also, increments counter to determine if a point sh ould be saved.

pulsePin(GPIO_1, 100, True)

timeCount %= WRITE_POINT_EVERY_SECS

def specifyPortalAddress(portalAddress):

Call this function to specify Portal's address in y our SNAP network.
By default, Portal's address is ' \x00\x00\ x01' and you will only need

s if you have changed that default value in Portal.

\x00\x01'

if len(portalAddress) != 3:
\x00\x01'

if ord(portalAddress[0]) != 0 or ord(porta lAddress[1]) != 0:
\x00\x01'

saveNvParam(NV_PORTAL_ADDRESS, portalAddress)

Configures the serial connection to the GPS device.
Configures LEDs and the piezo buzze r for feedback.

stdinMode(1, False) # Char mode, no echo

Connect GPS serial output to STDIN, where our eve nt handler will parse the

crossConnect(DS_UART0, DS_STDIO)

oadNvParam(NV_PORTAL_ADDRESS))

October 11, 2010

e products are patent pending.

S has provided a complete set of data to forward

"I'm alive!" indicator.

Call this function to specify Portal's address in y our SNAP network.
x01' and you will only need

Connect GPS serial output to STDIN, where our eve nt handler will parse the

October 11, 2010

© 2010 Synapse®, All Rights Reserved. All Synaps

 setPinDir(GPIO_1, True)
 writePin(GPIO_1, False)
 setPinDir(GPIO_2, True)
 writePin(GPIO_2, False)
 setPinDir(GPIO_12, True)
 writePin(GPIO_12, False)

@setHook(HOOK_STDIN)
def _stdinEvent(buf):
 """
 Receive handler for character input on UART0.
 The parameter 'buf' will contain one or more receiv ed characters.
 The UART input is handled one (or a few) characters at a time because
 the complete NMEA sentence exceeds the size of some SNA
 """
 global state
 global curTok

 n = len(buf)
 i = 0
 while(i < n):
 c = buf[i]
 i += 1

 if len(curTok) > 20:
 state = 0

 if state == 0:
 # Loo k for 'start' delimiter
 if c == '$':
 state = 1
 else:
 # Look for 'token' delimiter
 if c == ',' or c == '
 _procTok(curTok)
 curTok = ''
 else:
 # Accumulate characters to build next token
 curTok += c

def _sendGpsInfo():
 """
 Sends the collected GPS information to Portal
 """
 global lat_deg
 global lat_min
 global lat_frac_min
 global lat_pole
 global lng_deg
 global lng_min
 global lng_frac_min
 global lng_meridian
 global altitude
 global numSatellites

 portalAddress = loadNvParam(NV_PORTAL_ADDRESS)

 timeString = str(utc_hr) + ':'
 if utc_min < 10:
 timeStri ng = timeString + '0'
 timeString = timeString + str(utc_min) + ':'
 if utc_sec < 10:

 Using SNAP to Drive and Monitor GPS Devices

Reserved. All Synapse products are patent pending.

Receive handler for character input on UART0.
The parameter 'buf' will contain one or more receiv ed characters.
The UART input is handled one (or a few) characters at a time because
the complete NMEA sentence exceeds the size of some SNAPpy string buffers.

k for 'start' delimiter

Look for 'token' delimiter
if c == ',' or c == ' \r':

_procTok(curTok)

Accumulate characters to build next token

Sends the collected GPS information to Portal

portalAddress = loadNvParam(NV_PORTAL_ADDRESS)

timeString = str(utc_hr) + ':'

ng = timeString + '0'
timeString = timeString + str(utc_min) + ':'

Using SNAP to Drive and Monitor GPS Devices

e products are patent pending. 13

The UART input is handled one (or a few) characters at a time because
Ppy string buffers.

 Using SNAP to Drive and

14 © 2010 Synapse®, All Rights

 timeString = timeString + '0'
 timeString = timeString + str(utc_sec)

 latString = str(lat_deg) + ' ' + str(lat_min) + '.' + str(lat_frac_min) +
 lngString = str(lng_deg) + ' ' + str(lng_min) + '.' + str(lng_frac_min) +
lng_meridian
 altString = str(altitude)
 satString = str(numSatellites)

 rpc(portalAddress, 'getAll', timeString, latString, lngString, altString,
satString)

 lat_deg = lat_min = lat_frac_min = lng_deg = lng_mi n = lng_frac_min = altitude =
numSatellites = 0
 lat_pole = lng_meridian = ' '

def _parseTime():
 """
 Parse the time results
 """
 global utc_hr
 global utc_min
 global utc_sec
 utc_hr = int(curTok[:2])
 utc_min = int(curTok[2:4])
 utc_sec = int(curTok[4:6])

def _parseLat():
 """
 Parse the latitude details
 """
 global lat_deg, lat_min, lat_frac_min
 lat_deg = int(curTok[:2])
 lat_min = int (curTok[2:4])
 lat_frac_min = int(curTok[5:])

def _parseLon():
 """
 Parse the logitude details
 """
 global lng_deg, lng_min, lng_frac_min
 lng_deg = int(curTok[:3])
 lng_min = int(curTok[3:5])
 lng_frac_min = int(curTok[6:])

def _procTok(curToken):
 """
 Process NMEA tokens
 """
 global state
 global lat_pole
 global lng_meridian
 global fixStat
 global numSatellites
 global altitude
 global dataReadyToSend

 # States:
 # 0 - Idle
 # 1 - Sentence ID
 # 2 - GPGGA: time
 # 3 - GPGGA: latitude
 # 4 - GPGGA: N/S

Using SNAP to Drive and Monitor GPS Devices October

All Rights Reserved. All Synapse products are patent pending.

timeString = timeString + '0'
timeString = timeString + str(utc_sec)

latString = str(lat_deg) + ' ' + str(lat_min) + '.' + str(lat_frac_min) +
lngString = str(lng_deg) + ' ' + str(lng_min) + '.' + str(lng_frac_min) +

satString = str(numSatellites)

rpc(portalAddress, 'getAll', timeString, latString, lngString, altString,

lat_deg = lat_min = lat_frac_min = lng_deg = lng_mi n = lng_frac_min = altitude =

lat_pole = lng_meridian = ' '

utc_min = int(curTok[2:4])
utc_sec = int(curTok[4:6])

Parse the latitude details

global lat_deg, lat_min, lat_frac_min

(curTok[2:4])
lat_frac_min = int(curTok[5:])

Parse the logitude details

global lng_deg, lng_min, lng_frac_min

lng_min = int(curTok[3:5])
lng_frac_min = int(curTok[6:])

October 11, 2010

e products are patent pending.

latString = str(lat_deg) + ' ' + str(lat_min) + '.' + str(lat_frac_min) + lat_pole
lngString = str(lng_deg) + ' ' + str(lng_min) + '.' + str(lng_frac_min) +

rpc(portalAddress, 'getAll', timeString, latString, lngString, altString,

lat_deg = lat_min = lat_frac_min = lng_deg = lng_mi n = lng_frac_min = altitude =

October 11, 2010

© 2010 Synapse®, All Rights Reserved. All Synaps

 # 5 - GPGGA: longitude
 # 6 - GPGGA: E/W
 # 7 - GPGGA: Fix
 # 8 - GPGGA: # satellites
 # 9 - GPGGA: HDOP
 # 10 - GPGGA: altitude

 if state == 1:
 if curToken == 'GPGGA':
 state = 2
 elif curToken == 'GPRMC':
 state = 20
 elif curToken == 'GPGSA':
 state = 40
 else:
 state = 0
 elif state == 2:
 if len(curToken) == 10:
 _parseTime()
 state = 3
 else:
 state = 0
 elif state == 3:
 if len(curToken) == 9:
 _parseLat()
 state = 4
 else:
 state = 0
 elif state == 4:
 if len(curToken) == 1:
 lat_pole = 'N' if curToken == 'N' else 'S'
 state = 5
 else:
 state = 0
 elif state == 5:
 if len(curToken) == 10:
 _parseLon()
 state = 6
 else:
 state = 0
 elif state == 6:
 if len(curToken) == 1:
 lng_meridian = 'E' if curToken == 'E' else 'W'
 state = 7
 else:
 state = 0
 elif state == 7:
 fixStat = int(curToken)
 state = 8
 elif state == 8:
 numSatellites = int(curToken)
 state = 9
 elif state == 9:
 # Discard HDOP
 state = 10
 elif state == 10:
 altitude = int(curToken)
 dataReadyToSend = True
 state = 0
 else:
 state = 0

 Using SNAP to Drive and Monitor GPS Devices

Reserved. All Synapse products are patent pending.

GPGGA: # satellites

if curToken == 'GPGGA':

elif curToken == 'GPRMC':

elif curToken == 'GPGSA':

if len(curToken) == 10:

if len(curToken) == 9:

if len(curToken) == 1:
lat_pole = 'N' if curToken == 'N' else 'S'

if len(curToken) == 10:

if len(curToken) == 1:
lng_meridian = 'E' if curToken == 'E' else 'W'

fixStat = int(curToken)

numSatellites = int(curToken)

altitude = int(curToken)
dataReadyToSend = True

Using SNAP to Drive and Monitor GPS Devices

e products are patent pending. 15

 Using SNAP to Drive and

16 © 2010 Synapse®, All Rights

GPS_Portal

Load this script into Portal to perform the logging.

"""
This is part of the suite of position scripts. This script is to be loaded into
Portal.

Load the GPS_Logger script into a node on a ProtoBo ard with a GPS d
Make
a serial connection from Portal to that node.

Every time the GPS unit receives a GPS position it sends that information to Portal,
which logs the data to a text file in the C:

You can then load that file into Goo

Data logging does not begin until you invoke the st artNewFile() function. When you
are done, invoke the closeExistingFile() function t o close out the KML file.
"""

from datetime import datetime
import os

def getAll(ti meString, latString, lngString, altString, satStrin g):
 global pointNumber
 stringToWrite = latString + ', ' + lngString + ', ' + altString + ', ' + satString
+ ', ' + timeString + ', ' + str(pointNumber) + '
 print stringToWrite

 if fi leIsOpen and latString != '0 0.0 ' and lngString != '0 0.0 ' and altString !=
'0' and satString != '0':
 # The reported information is in sync. Save it!
 pointNumber += 1

 # Save the KML data.
 theLat = latString.split(
 theLng = lngString.split(' ')

 theLat.append(theLat[1][
 theLat[0] = float(theLat[0])
 theLat[1] = float(theLat[1][:

 theLng.append(theLng[1][
 theLng[0] = float(theLng[0])
 theLng[1] = float(theLng[1][:

 latitude = theLat[0] + theLat[1] / 60
 longitude = theLng[0] + theLng[1] / 60

 numSats = int(satString)

 if theLng[2] == 'W':
 longitude = 0 - longitude
 if theLat[2] == 'S':
 latitude = 0 - latitude

 if numSats <= RED_THRESHHOLD:
 pinColor = 'red'
 elif numSats <= ORANGE_THRESHHOLD:
 pinColor = 'orange'
 elif numSats <= YELLOW_THRESHHO
 pinColor = 'yellow'

Using SNAP to Drive and Monitor GPS Devices October

All Rights Reserved. All Synapse products are patent pending.

Load this script into Portal to perform the logging.

This is part of the suite of position scripts. This script is to be loaded into

Load the GPS_Logger script into a node on a ProtoBo ard with a GPS d evice attached.

a serial connection from Portal to that node.

Every time the GPS unit receives a GPS position it sends that information to Portal,
which logs the data to a text file in the C: \RangeData directory.

You can then load that file into Goo gle Maps to see where you ended up.

Data logging does not begin until you invoke the st artNewFile() function. When you
are done, invoke the closeExistingFile() function t o close out the KML file.

meString, latString, lngString, altString, satStrin g):

stringToWrite = latString + ', ' + lngString + ', ' + altString + ', ' + satString
+ ', ' + timeString + ', ' + str(pointNumber) + ' \n'

leIsOpen and latString != '0 0.0 ' and lngString != '0 0.0 ' and altString !=

The reported information is in sync. Save it!

theLat = latString.split(' ')
theLng = lngString.split(' ')

theLat.append(theLat[1][-1])
theLat[0] = float(theLat[0])
theLat[1] = float(theLat[1][: -1])

theLng.append(theLng[1][-1])
theLng[0] = float(theLng[0])
theLng[1] = float(theLng[1][: -1])

latitude = theLat[0] + theLat[1] / 60
longitude = theLng[0] + theLng[1] / 60

numSats = int(satString)

longitude

latitude

if numSats <= RED_THRESHHOLD:

elif numSats <= ORANGE_THRESHHOLD:
pinColor = 'orange'

elif numSats <= YELLOW_THRESHHO LD:
pinColor = 'yellow'

October 11, 2010

e products are patent pending.

This is part of the suite of position scripts. This script is to be loaded into

evice attached.

Every time the GPS unit receives a GPS position it sends that information to Portal,

Data logging does not begin until you invoke the st artNewFile() function. When you
are done, invoke the closeExistingFile() function t o close out the KML file.

stringToWrite = latString + ', ' + lngString + ', ' + altString + ', ' + satString

leIsOpen and latString != '0 0.0 ' and lngString != '0 0.0 ' and altString !=

October 11, 2010

© 2010 Synapse®, All Rights Reserved. All Synaps

 else:
 pinColor = 'green'

 f = open(FILE_PATH + 'data' + startTimeString + '.k ml', 'a')
 f.write(' <Placemark>
 f.write(' <name>Point
 f.write(' <styleUrl>#%sStyle</st yleUrl>
 f.write(' <description>Point %i has these details:
%(pointNumber,))
 f.write('
 f.write(' Latitude: %f
 f.write(' Longitude : %f
 f.write('
 f.write(' Number of Satellites: %s
(satString,))
 f.write(' </description>
 f.write(' <Point>
 f.write('
(longitude, latitude, altString))
 f.write(' </Point>
 f.write(' </Placemark>
 f.close()

def startNewFile():
 global fileIsOpen
 global pointNumber

 setTimeString()
 # Create kml file for Google Maps upload
 f = open(FILE_PATH + 'data' + startTimeString + '.k ml', 'w')
 f.write('<?xml version="1.0" encoding="UTF
 f.write('<kml xmlns="http://w
 f.write(' <Document>\ n')
 writeStyle('red', 'ff0000ff', f)
 writeStyle('orange', 'ff007fff', f)
 writeStyle('yellow', 'ff00ffff', f)
 writeStyle('green', 'ff00ff00', f)
 f.write(' <Folder> \
 f .write(' <name>GPS position file started at %s</name>
(startTimeString,))
 f.write(' <description>This GPS tracking record was run starting at
%s.</description>\ n' % (startTimeString,))
 f.close()
 fileIsOpen = True
 pointNumber = 0

def writeStyle(color, hex, f):
 f.write(' <Style id="%sStyle">
 f.write(' <IconStyle id="pin%s">
 f.write(' <color>%s</color>
 f.write(' <colorMode>normal</colorMode>
 f.write(' <scale>1</scale>
 f.write(' <Icon>
 f.write(' <href>http://maps.goog le.com/mapfiles/ms/micons/%s
dot.png</href>\ n' % (color,))
 f.write (' </Icon>
 f.write(' <heading>0</heading>
 f.write(' </IconStyle>
 f.write(' </Style> \

def closeExistingFile():
 global fileIsOpen

 Using SNAP to Drive and Monitor GPS Devices

Reserved. All Synapse products are patent pending.

pinColor = 'green'

f = open(FILE_PATH + 'data' + startTimeString + '.k ml', 'a')
f.write(' <Placemark> \n')
f.write(' <name>Point %i</name>\ n' % (pointNumber,))
f.write(' <styleUrl>#%sStyle</st yleUrl> \ n' % (pinColor,))
f.write(' <description>Point %i has these details:

f.write(' Time: %s\ n' % (timeString,))
f.write(' Latitude: %f \ n' % (latitude,))
f.write(' Longitude : %f \ n' % (longitude,))
f.write(' Altitude: %s\ n' % (altString,))
f.write(' Number of Satellites: %s

f.write(' </description> \n')
f.write(' <Point> \n')

 <coordinates>%f,%f,%s</coordinates>
(longitude, latitude, altString))

f.write(' </Point> \n')
f.write(' </Placemark> \n')

Create kml file for Google Maps upload
f = open(FILE_PATH + 'data' + startTimeString + '.k ml', 'w')
f.write('<?xml version="1.0" encoding="UTF -8"?>\n')
f.write('<kml xmlns="http://w ww.opengis.net/kml/2.2">\n')

n')
writeStyle('red', 'ff0000ff', f)
writeStyle('orange', 'ff007fff', f)
writeStyle('yellow', 'ff00ffff', f)
writeStyle('green', 'ff00ff00', f)

\n')
.write(' <name>GPS position file started at %s</name> \ n' %

f.write(' <description>This GPS tracking record was run starting at
n' % (startTimeString,))

def writeStyle(color, hex, f):
f.write(' <Style id="%sStyle"> \n' % (color,))
f.write(' <IconStyle id="pin%s"> \n' % (color,))
f.write(' <color>%s</color> \n' % (hex,))

<colorMode>normal</colorMode>\n')
f.write(' <scale>1</scale> \n')
f.write(' <Icon> \n')
f.write(' <href>http://maps.goog le.com/mapfiles/ms/micons/%s

n' % (color,))
(' </Icon> \n')

f.write(' <heading>0</heading> \n')
f.write(' </IconStyle> \n')

\n')

Using SNAP to Drive and Monitor GPS Devices

e products are patent pending. 17

n' % (pointNumber,))
n' % (pinColor,))

f.write(' <description>Point %i has these details: \n'

n' % (timeString,))
n' % (latitude,))

n' % (longitude,))
n' % (altString,))

f.write(' Number of Satellites: %s \n' %

<coordinates>%f,%f,%s</coordinates> \n' %

n' %

f.write(' <description>This GPS tracking record was run starting at

f.write(' <href>http://maps.goog le.com/mapfiles/ms/micons/%s -

 Using SNAP to Drive and

18 © 2010 Synapse®, All Rights

 global pointNumber

 pointNumber = 0

 if fileIsOpen:
 f = open(FILE_PATH + 'data' + startTimeString + '.k ml', 'a')
 f.write(' </Folder>
 f.write(' </Document>
 f.write('</kml>')
 f.close()
 fileIsOpen = False

def setTimeString():
 global startTimeString
 startDateTime = datetime.now()
 startDateTuple = startDateTime.timetuple()
 startHour = str(startDateTuple[3])
 startMinute = str(startDateTuple[4])
 if len(startMinute) == 1:
 startMinute = '0' + sta
 startTimeString = startHour + '_' + startMinute

Run at startup
setTimeString()
pointNumber = 0
fileIsOpen = False

RED_THRESHHOLD = 3
ORANGE_THRESHHOLD = 5
YELLOW_THRESHHOLD = 7

FILE_PATH = 'c:\\RangeData\\'
if not os.access(FILE_PATH, os
 os.makedirs(FILE_PATH)

Using SNAP to Drive and Monitor GPS Devices October

All Rights Reserved. All Synapse products are patent pending.

f = open(FILE_PATH + 'data' + startTimeString + '.k ml', 'a')
f.write(' </Folder> \n')
f.write(' </Document> \n')

startDateTime = datetime.now()
startDateTuple = startDateTime.timetuple()
startHour = str(startDateTuple[3])
startMinute = str(startDateTuple[4])

startMinute = '0' + sta rtMinute

startTimeString = startHour + '_' + startMinute

if not os.access(FILE_PATH, os .F_OK):

October 11, 2010

e products are patent pending.

October 11, 2010

© 2010 Synapse®, All Rights Reserved. All Synaps

Appendix 2

A SNAP-friendly GPS device

You can connect your GPS device to a Synapse ProtoBoard by connecting the

wires through the terminal block, as shown at the begi

document. If you want a more robust and modular

to construct a more permanent fixture

device.

One approach to solving this takes advantage of jumper J2 on the

ProtoBoard, which has 24 pins mapping to the 24 pins on the RF Engine. A

24-pin connector, mounted to a small piece of perf board, provides a stable

platform for mounting the GPS device so

correctly connected to the ProtoBoard.

GPS device connect to the pins from the

24-pin connector. (Unused pins were

removed from the connector before it was

attached to the board.) Thi

only pins 21 and 24 for power, pin 14 for

the buzzer (GPIO_12), and pins 5 and 6 for the serial connection to UART0

on the SNAP Engine.

With the GPS device mounted to the perfboard, it’s an easy matter to affix

to a ProtoBoard with a SNAP Engine. The GPS module is easily removed

when you need to retask your SNAP hardware, and easily reattached at a

later date without having to go looking for pinout diagrams to remember

which wire went where.

 Using SNAP to Drive and Monitor GPS Devices

Reserved. All Synapse products are patent pending.

friendly GPS device

You can connect your GPS device to a Synapse ProtoBoard by connecting the

through the terminal block, as shown at the beginning of this

document. If you want a more robust and modular package, you might want

more permanent fixture to allow you to easily attach the GPS

One approach to solving this takes advantage of jumper J2 on the

ProtoBoard, which has 24 pins mapping to the 24 pins on the RF Engine. A

pin connector, mounted to a small piece of perf board, provides a stable

platform for mounting the GPS device so the entire board can be quickly and

correctly connected to the ProtoBoard.

The image at left shows a 24-pin connector

mounted to a piece of perfboard. The green

and black wires, as you will see, connect to a

piezo buzzer on the other side of the board.

little bit of epoxy helps hold the connector in

place.

The top of the

perfboard

shows how

the piezo

buzzer and

GPS device connect to the pins from the

pin connector. (Unused pins were

removed from the connector before it was

attached to the board.) This device requires

only pins 21 and 24 for power, pin 14 for

, and pins 5 and 6 for the serial connection to UART0

With the GPS device mounted to the perfboard, it’s an easy matter to affix

NAP Engine. The GPS module is easily removed

when you need to retask your SNAP hardware, and easily reattached at a

later date without having to go looking for pinout diagrams to remember

Using SNAP to Drive and Monitor GPS Devices

e products are patent pending. 19

You can connect your GPS device to a Synapse ProtoBoard by connecting the

nning of this

you might want

attach the GPS

One approach to solving this takes advantage of jumper J2 on the

ProtoBoard, which has 24 pins mapping to the 24 pins on the RF Engine. A

pin connector, mounted to a small piece of perf board, provides a stable

the entire board can be quickly and

pin connector

mounted to a piece of perfboard. The green

and black wires, as you will see, connect to a

piezo buzzer on the other side of the board. A

little bit of epoxy helps hold the connector in

, and pins 5 and 6 for the serial connection to UART0

With the GPS device mounted to the perfboard, it’s an easy matter to affix it

NAP Engine. The GPS module is easily removed

when you need to retask your SNAP hardware, and easily reattached at a

later date without having to go looking for pinout diagrams to remember

 Using SNAP to Drive and

20 © 2010 Synapse®, All Rights

Using SNAP to Drive and Monitor GPS Devices October

All Rights Reserved. All Synapse products are patent pending.

October 11, 2010

e products are patent pending.

October 11, 2010

© 2010 Synapse®, All Rights Reserved. All Synaps

It may be useful to use a rubber band or z

hold the GPS module to the ProtoBoard, if you

expect to be moving the unit around.

 Using SNAP to Drive and Monitor GPS Devices

Reserved. All Synapse products are patent pending.

It may be useful to use a rubber band or z

hold the GPS module to the ProtoBoard, if you

expect to be moving the unit around.

Using SNAP to Drive and Monitor GPS Devices

e products are patent pending. 21

It may be useful to use a rubber band or zip strip to

hold the GPS module to the ProtoBoard, if you

 Using SNAP to Drive and

22 © 2010 Synapse®, All Rights

License governing any code samples presented in th

Application Note

Redistribution of code and use in source and binary forms, with or without

modification, are permitted provided that

operates only on SNAP® networks,

documentation and/or other materials

Copyright 2010, Synapse

Neither the name of Synapse

endorse or promote products derived from this software without specific

prior written permission.

This software is provided "AS IS," without a warranty of any kind. ALL

EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR

A PARTICULAR PURPOSE OR NON

SYNAPSE AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES

SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR

DISTRIBUTING THIS SOFTWARE OR ITS D

SYNAPSE OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PR

OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL,

INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS

OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY

TO USE THIS SOFTWARE, EVEN IF

POSSIBILITY OF SUCH DAMAGES.

Using SNAP to Drive and Monitor GPS Devices October

All Rights Reserved. All Synapse products are patent pending.

License governing any code samples presented in th

and use in source and binary forms, with or without

modification, are permitted provided that it retains the copyright notice

networks, and the paragraphs below in the

cumentation and/or other materials are provided with the distribution:

 Wireless Inc., All rights Reserved.

ither the name of Synapse nor the names of contributors may be used to

endorse or promote products derived from this software without specific

This software is provided "AS IS," without a warranty of any kind. ALL

EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR

A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED.

AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES

SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR

DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL

OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PR

OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL,

INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS

OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY

TO USE THIS SOFTWARE, EVEN IF SYNAPSE HAS BEEN ADVISED OF THE

SSIBILITY OF SUCH DAMAGES.

October 11, 2010

e products are patent pending.

License governing any code samples presented in this

and use in source and binary forms, with or without

copyright notice,

in the

provided with the distribution:

nor the names of contributors may be used to

endorse or promote products derived from this software without specific

This software is provided "AS IS," without a warranty of any kind. ALL

EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR

REBY EXCLUDED.

AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES

SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR

ERIVATIVES. IN NO EVENT WILL

OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT

OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL,

INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS

OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY

HAS BEEN ADVISED OF THE

October 11, 2010

© 2010 Synapse®, All Rights Reserved. All Synaps

Disclaimers

Information contained in this Release Note is provided in connection with

Synapse products and services and is intended solely to assist its customers.
Synapse reserves the right to make changes at any time an

Synapse assumes no liability whatsoever for the contents of this Release
Note or the redistribution as permitted by the foregoing Limited License. The

terms and conditions governing the sale or use of Synapse products is
expressly contained in the Synapse’s Terms and Condition for the sale of

those respective products.

Synapse retains the right to make changes to any product specification at
any time without notice or liability to prior users, contributors, or recipients

of redistributed versions of this Release Note. Errata should be checked on

any product referenced.

Synapse and the Synapse logo are registered trademarks of Synapse. All
other trademarks are the property of their owners.

For further information on any Synapse product or

Synapse Wireless, Inc.
500 Discovery Drive

Huntsville, Alabama 35806

256-852-7888
877-982-7888

256-852-7862 (fax)

www.synapse-wireless.com

 Using SNAP to Drive and Monitor GPS Devices

Reserved. All Synapse products are patent pending.

Information contained in this Release Note is provided in connection with

Synapse products and services and is intended solely to assist its customers.
Synapse reserves the right to make changes at any time and without notice.

Synapse assumes no liability whatsoever for the contents of this Release
Note or the redistribution as permitted by the foregoing Limited License. The

terms and conditions governing the sale or use of Synapse products is
ed in the Synapse’s Terms and Condition for the sale of

those respective products.

Synapse retains the right to make changes to any product specification at
any time without notice or liability to prior users, contributors, or recipients

versions of this Release Note. Errata should be checked on

Synapse and the Synapse logo are registered trademarks of Synapse. All
other trademarks are the property of their owners.

For further information on any Synapse product or service, contact us at:

Huntsville, Alabama 35806

wireless.com

Using SNAP to Drive and Monitor GPS Devices

e products are patent pending. 23

Information contained in this Release Note is provided in connection with

Synapse products and services and is intended solely to assist its customers.
d without notice.

Synapse assumes no liability whatsoever for the contents of this Release
Note or the redistribution as permitted by the foregoing Limited License. The

terms and conditions governing the sale or use of Synapse products is
ed in the Synapse’s Terms and Condition for the sale of

Synapse retains the right to make changes to any product specification at
any time without notice or liability to prior users, contributors, or recipients

versions of this Release Note. Errata should be checked on

Synapse and the Synapse logo are registered trademarks of Synapse. All

service, contact us at:

http://www.synapse-wireless.com/

